OMP > Actualités scientifiques > NIKA observes the merging of clusters of galaxies

NIKA observes the merging of clusters of galaxies

A team of researchers belonging to the the NIKAconsortium (1) led by Rémi Adam (Laboratoire Lagrange - OCA, UCA, LPSC Grenoble, CNES), Iacopo Bartalucci and Gabriel Pratt (CEA Saclay), obtained for the first time an image of the gas velocity during the merging of several clusters of galaxies. These observations offer a new way of studying the formation of clusters as essential components of large structures formed during the most energetic events in the Universe. Before obtaining these observations, the NIKA consortium, led by Alain Benoît and Alessandro Monfardini (Institut Néel), also built, tested and commissioned the instrument.

Right picture: Multi-wavelength image of the MACS J0717.5 + 3745 group of clusters showing the distribution of galaxies (green, Hubble Space Telescope data), the gas density (red, X-rays, Chandra data), the electronic pressure of the gaz (blue, NIKA camera) and the kSZ signal (yellow contours, NIKA). The red circles (A, B, C and D) indicate the position of the main sub-clusters. At the distance of the cluster (about 5 billion light-years away), the size of the image corresponds to about 5 million light-years. © NIKA Consortium

Galaxies clusters : fundamental parts of our Universe

L'Univers dans lequel nous vivons aujourd'hui a été façonné par la formation des grandes structures, qui ont commencé à se former par effondrement gravitationnel il y a environ 14 milliards d'années, juste après le Big Bang. Aujourd'hui, les plus grands objets gravitationnellement liés, qui constituent les pièces fondamentales de notre Univers, sont les amas de galaxies. Malgré leur nom, les amas de galaxies sont principalement composés de matière noire (~ 85%) et de gaz chaud ionisé (~ 12%), avec seulement quelques pourcents de leur masse contenue dans les galaxies. Pour cette raison, le processus de formation des amas est dominé par l'effondrement gravitationnel de la matière noire, le gaz et les galaxies "suivant" ce processus. Au cours de leur assemblage, les amas peuvent entrer en collision les uns avec les autres, avec une vitesse élevée. Ces fusions sont les événements les plus énergiques depuis le Big Bang et ils sont fondamentaux pour comprendre comment s’assemblent les structures dans l'Univers.

NIKA : a scientific challenge

Une façon d'étudier la vitesse des amas est de mesurer l'empreinte de leur mouvement dans le rayonnement du fond diffus cosmologique (CMB) par l'utilisation de l'effet Sunyaev-Zel'dovich cinétique (kSZ). Cet effet provient du décalage Doppler des photons du CMB quand ils interagissent avec les électrons du gaz intra-amas qui se déplacent à grande vitesse. L'effet kSZ est le seul moyen connu de mesurer directement la vitesse particulière d'objets à des distances cosmologiques, parce que contrairement à d'autres méthodes, le rayonnement du CMB lui-même fournit une référence absolue pour la mesure. Si son homologue thermique (l’effet Sunyaev-Zel'dovich thermique, tSZ) est maintenant couramment utilisé pour mesurer la pression du gaz dans les amas, l'effet kSZ reste quant à lui très difficile à observer et seulement une poignée de détections de faible signification statistique a été obtenue jusqu'à présent.
The New IRAM KIDs Array, (NIKA) était le prototype de la caméra de plus grandes dimensions, NIKA2, récemment installée au télescope de 30m de l’IRAM. NIKA et NIKA2 observent les signaux astronomiques à 150 et 260 GHz, et en principe, cette approche double-bande permet aux astronomes d'extraire à la fois le signal tSZ et kSZ quand ils observent les amas de galaxies. Motivée par le défi scientifique et les performances élevées de NIKA, l'équipe a décidé de tenter une mesure de l’effet kSZ en cartographiant l’un des amas où le processus de fusion est des plus violents, MACS J0717.5+ 3745, et dont le décalage vers le rouge de 0.55 correspond à une distance de plusieurs milliards d’années lumières.

mr_3854_5

Gauche : signal kSZ en direction de l’amas MACS J0717.5+3745 (rapport signal sur bruit), donnant la quantité de mouvement du gaz sur la ligne de visée. Droite : vitesse du gaz sur la ligne de visée, en km/s, par rapport au référentiel du CMB. ©Consortium NIKA

Cette cartographie kSZ fournit la quantité de mouvement du gaz intégrée sur la ligne de visée par rapport au cadre de référence du CMB; c’est donc une mine d'informations pour comprendre la physique des amas en fusion. Les données ont révélé que les deux sous-amas principaux de MACS J0717.5+3745, à savoir B et C (Figure 1), sont en train de tomber l’un sur l'autre avec une très grande quantité de mouvement (Figure 2, à gauche). Rémi Adam souligne : « la simple détection de l'effet kSZ est déjà un excellent résultat en soi, mais quand nous avons réalisé que nous étions en mesure d'en obtenir une carte, ce fut un succès considérable pour nous ».
La mesure du signal kSZ est une première étape, mais il est encore plus difficile de mesurer la vitesse du gaz elle-même, car il est nécessaire pour cela de séparer le signal kSZ de la distribution de densité du gaz le long de la ligne de visée. Cette procédure a requis l'utilisation d'observations en rayons X par les satellites XMM-Newton et Chandra, qui, grâce à un modèle physique, ont permis à l'équipe de mesurer la vitesse de déplacement de l’amas et même d'extraire une carte de la vitesse du gaz par rapport au référentiel du CMB (figure 2, à droite). L'image obtenue n’est pas facile à interpréter car elle dépend des hypothèses de modélisation. Elle est néanmoins particulièrement frappante car elle présente, pour la première fois, une image du gaz en mouvement dans un amas de galaxies, qui de plus est très lointain.
Ces résultats ouvrent la voie à une nouvelle manière d'étudier la fusion des amas, en montrant que de telles observations sont maintenant possibles avec une résolution angulaire élevée et des instruments de haute sensibilité, telle que la caméra NIKA au télescope de 30m de l’IRAM. Le nouvel instrument NIKA2, maintenant installé au télescope, offre des perspectives très prometteuses pour l'étude des amas de galaxies, y compris les amas en fusion par l'effet kSZ. Cela permettra aux astronomes d'étudier la formation des grandes structures dans l'Univers lointain.

About the NIKA consortium

(1) Le consortium NIKA inclut des scientifiques, ingénieurs et techniciens de l’Institut Néel, l’IPAG, le LPSC, l’IRAM, l’IAS, le CEA, l’IRAP, l’IEF, l’IAP, l’Observatoire de Paris, Sapienza Università di Roma, le LAM, l’UCL, l’Université de Cardiff, l’ESO, le laboratoire Lagrange (OCA) et l’IAC. Les résultats présentés ici impliquent des scientifiques du JPL, du RIT, Arizona State University, the University of Arizona et Università degli Studi di Roma Tor Vergata.

Further Resources

IRAP Contact

  • Etienne Pointecouteau, Etienne.Pointecouteau@irap.omp.eu
Afficher le pied de page