OMP > Actualités scientifiques > The "Tchouri" comet took several million years to form

The "Tchouri" comet took several million years to form

The heating produced by the disintegration of isotopes of aluminum and iron potentially present in the 67P / Churyumov-Gerasimenko comet would have been too intense at the beginning of the life of the protosolar nebula to explain the presence of materials at low temperature. Indeed, the presence of carbon monoxide, nitrogen or argon, as evidenced in 67P / Churyumov-Gerasimenko by the Rosetta mission, is only possible if the comet has formed after 2 to 8 Million years of evolution of the nebula so that it cools sufficiently and allows the comet to form, while keeping its materials more volatile. The other possibility is that the comet would have formed slowly over this entire interval of time, allowing it to preserve much of the ice it has acquired from the nebula. This is the result of a study led by researchers from the Marseille Astrophysics Laboratory (CNRS / Aix-Marseille University) and including an IRAP researcher (Université Paul Sabatier in Toulouse, CNRS and CNES). The study was published on April 6, 2017 in The Astrophysical Journal Letters.

Right Photo : Single frame enhanced NAVCAM taken on 17 November 2015, when Rosetta was 141.4 km from the nucleus of Comet 67P/Churyumov-Gerasimenko. The scale is 12.1 m/pixel and the image measures 12.3 km across. Copyright ESA/Rosetta/NAVCAM

Les conditions de formation des comètes demeurent encore méconnues. Ces objets se sont agglomérés soit à partir de blocs de constructions directement formés dans la nébuleuse protosolaire, soit d'après des débris provenant de la destruction de plus gros corps parents. Dans ces conditions, l’équipe a simulé l’influence du chauffage radiogénique sur la structure et la composition de corps glacés de tailles comprises entre celles des lobes de 67P/Churyumov-Gerasimenko (~2.6 km) et de la comète Hale-Bopp (~70 km), en utilisant les abondances canoniques de l’aluminium 26 et le fer 60, les deux nucléides dont la désintégration est considérée comme une source de chaleur importante pour les corps planétaires formés au tout début de l’histoire du système solaire. 

Les résultats de l’étude décrivent qu’il est à la fois impossible de former rapidement 67P/Churyumov-Gerasimenko, ou bien son corps parent, et de préserver les espèces volatiles observées dans la coma par la mission Rosetta. Les simulations attestent que si la croissance a été très rapide, la comète ou son corps parent ont dû se former entre 2,2 et 7,7 millions d’années après l’apparition de la nébuleuse protosolaire. Par contre, si la comète ou son corps parent se sont accrétés lentement, mais toujours sur le même intervalle de temps, alors ils ont pu préserver la majorité de leurs espèces volatiles.

Des délais plus courts de formation ou d’accrétion, compris entre 0,5 et 6,7 millions d’années après la formation de la nébuleuse, sont envisageables si l’on admet que l’intérieur profond de la comète ou de son corps parent ont été appauvris en espèces volatiles par le chauffage radiogénique, et que les couches externes sont restées riches en glaces. Cependant, si 67P/Churyumov-Gerasimenko s’est formée à partir de morceaux issus d’un tel corps parent, ceux ci constitueraient probablement un mélange homogène et il serait impossible de savoir si ces débris proviennent des couches internes ou externe de l’objet primitif.

La principale conclusion de ce travail est que la question de l’origine et des conditions de formation des blocs de construction de 67P/Churyumov-Gerasimenko demeure encore sans réponse. Une mission de retour d’échantillons vers une autre comète de la famille de Jupiter sera probablement nécessaire pour apporter de nouvelles réponses.

om

De haut en bas : évolution temporelle du profil de température dans un petit corps possédant une taille de 2,6 km et constitué d’un mélange de poussières réfractaires et de glaces cristallines, avec des retards de formation de 0, 1 et 2 millions d’années après l’apparition de la nébuleuse protosolaire. Les colonnes de gauche et de droite correspondent respectivement à des rapports de mélanges poussières/glaces valant 1 et 4 dans la comète. La courbe noire correspond à l’isotherme identifiant la frontière entre les régions de stabilité et d’instabilité des glaces les plus volatiles. A une époque donnée, la comète chauffe plus lorsqu’elle est enrichie en poussières réfractaires (colonne de droite). En outre, la température globale du noyau diminue lorsque l’accrétion est tardive. Crédits : d’après Mousis et al. 2017

Further Resources

IRAP Contact

  • Marc Monnereau, marc.monnereau@irap.omp.eu
Afficher le pied de page