OMP > Actualités scientifiques > What's left of martian atmosphere remains dynamic

What's left of martian atmosphere remains dynamic

Mars has lost much of its original atmosphere, but what's left stays quite active, recent findings from NASA's Mars rover Curiosity indicate. Rover team members reported diverse findings today at the European Geosciences Union 2013 General Assembly, in Vienna. Evidence has strengthened this month that Mars lost much of its original atmosphere by a process of gas escaping from the top of the atmosphere.

Curiosity's Sample Analysis at Mars (SAM) instrument analyzed an atmosphere sample last week using a process that concentrates selected gases. The results provided the most precise measurements ever made of isotopes of argon in the Martian atmosphere. Isotopes are variants of the same element with different atomic weights. "We found a robust signature of atmospheric loss on Mars," said Sushil Atreya, a SAM co-investigator at the University of Michigan, Ann Arbor.

Right figure : The hole produced by Curiosity during the first drilling into a rock on Mars to collect a sample from inside the rock. Image credit: NASA/JPL-Caltech/Cornell/MSSS

SAM found that Mars has about four times as much of a lighter stable isotope (argon-36) as of a heavier one (argon-38). This removes previous uncertainty about the ratio in the Martian atmosphere from 1976 Viking measurements and from small volumes of argon extracted from Martian meteorites. The ratio is much lower than the solar system's original ratio, as estimated from argon-isotope measurements of the sun and Jupiter. This points to a process at Mars that favored loss of the lighter isotope rather than the heavier one.

Curiosity measures several variables in today's Martian atmosphere with the Rover Environmental Monitoring Station (REMS), provided by Spain. While daily air temperature has climbed steadily since the measurements began eight months ago and is not strongly tied to the rover's location, humidity has differed significantly at different places along the rover's route. These are the first systematic measurements of humidity on Mars.

"We are seeing many patterns in a dynamic atmosphere, from seasonal pressure changes to quick afternoon whirlwinds," said REMS Principal Investigator Javier Gómez-Elvira of the Centro de Astrobiología, Madrid.

Dust distributed by the wind has been examined by Curiosity's laser-firing Chemistry and Camera (ChemCam) instrument. Initial laser pulses on each target hit dust. The laser's energy removes the dust to expose underlying material, but those initial pulses also provide information about the dust.

"Mars is red because of iron oxides in the dust," said ChemCam Deputy Principal Investigator Sylvestre Maurice of the Institut de Recherche en Astrophysique et Planetologie in Toulouse, France. "ChemCam finds a complex chemical composition of the dust that includes hydrogen, which could be in the form of hydroxyl groups or water molecules."

Possible interchange of water molecules between the atmosphere and the ground is studied by a combination of instruments on the rover, including the Dynamic Albedo of Neutrons (DAN), provided by Russia.

"We are watching for changes in water content of the ground at one site over time," said DAN Principal Investigator Igor Mitrofanov, of Space Research Institute, Moscow.

For the rest of April, Curiosity will be carrying out daily activities for which commands were sent in March, using DAN, REMS and the Radiation Assessment Detector (RAD). No new commands are being sent during a four-week period while Mars is passing nearly behind the sun, from Earth's perspective. This geometry occurs about every 26 months and is called Mars solar conjunction.

"After conjunction, Curiosity will be drilling into another rock where the rover is now, before heading for Mount Sharp," said Mars Science Laboratory Project Scientist John Grotzinger, of the California Institute of Technology, Pasadena. Mount Sharp rises about three miles (five kilometers) above the rover's current location. Its lower slopes are the next major destination.

NASA's Mars Science Laboratory Project is using Curiosity to investigate the environmental history within Gale Crater, a location where the project has found that conditions were long ago favorable for microbial life. Curiosity, carrying 10 science instruments, landed in August 2012 to begin its two-year prime mission. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, manages the project for NASA's Science Mission Directorate in Washington.

Further details about the mission:

http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl .

http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity .

Authors of the Press Release :

Guy Webster 818-354-6278, Jet Propulsion Laboratory, Pasadena, Calif.,

guy.websterSPAMFILTER@jpl.nasa.gov

Dwayne Brown 202-358-1726, NASA Headquarters, Washington,

dwayne.c.brownSPAMFILTER@nasa.gov
Afficher le pied de page